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AFIT/EO/ENG/09-06 

Abstract 

The purpose of the algorithm developed in this thesis was to create a post processing 

method that could resolve objects at low signal levels using polarization diversity and no 

knowledge of the atmospheric seeing conditions.  The process uses a two-channel system, 

one unpolarized image and one linearly polarized image, in a GEM algorithm to 

reconstruct the object.  Previous work done by Strong showed that a two-channel system 

using polarization diversity on short exposure imagery could produce images up to twice 

the diffraction limit.  In this research, long exposure images were simulated and a simple 

Kolmogorov model used.  This allowed for the atmosphere to be characterized by single 

parameter, the Fried Parameter.  Introducing a novel polarization prior that restricts the 

polarization parameter, it was possible to determine the Fried Parameter to within half a 

centimeter without any addition knowledge or processes.  It was also found that when 

high polarization diversity was present in the image could be reconstructed with 

significantly better resolution and signal level did not affect this resolving capability.  At 

very low signal levels, imagery with low to no diversity could not be resolved at all 

whereas high diversity resolved equally as well as if there was a high signal level.  

Current algorithms being used do not include polarization diversity but can substantially 

improve resolution.  Application of this algorithm could be used in dim-object detection 

around satellites as well as solar surface imagery.  
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BLIND DECONVOLUTION THROUGH POLARIZATION DIVERSITY OF 
LONG EXPOSURE IMAGERY 

I.  Introduction 

1.1 Motivation 

In 2001 the Department of Defense released a comprehensive report on the United States 

Space Capabilities.  In that report, it was said that we are ripe for a “Space Pearl Harbor.”  

[3] Since then, there has been a concerted effort to mitigate this possibly with the 

advancement of Space Superiority.  This is broken down into three categories: Offensive 

Counterspace, Defensive Counterspace, and Space Situational Awareness (SSA).  In orbit 

around the earth it is very difficult to identify and characterize anomalies that may occur 

with “blue” spacecraft or the functions and purpose of “red” spacecraft.  That is where 

SSA comes in. It is the attempt to have complete awareness of the battlespace in orbit.   

Advanced sensors designed to inspect the orbital battlespace or ground-based telescope 

systems are required.  The design and launch of satellites are very costly, especially at 

geosynchronous (GEO) orbit.  At Geo, there is so much distance between satellites that 

space-based optical systems need to be maneuvered close to each Resident Space Object 

(RSO) of interest.  This greatly limits lifetime due to finite fuel, and also restricts the 

response time kill chain after an event occurs.  On the other hand, ground based optical 

systems have a comparably low cost, can be easily repaired or upgraded, and can respond 

quickly when an event occurs.  The drawback is that observing must take place anywhere 

from hundreds of kilometers, for low earth, to thousands of kilometers for GEO.  On top 

of that, resolution is reduced considerable by atmospheric seeing conditions.  If large 

enough telescopes or telescope arrays are constructed, atmospheric distortion is the main 
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thing that needs to be mitigated.  Adaptive Optics can help significantly with this but do 

not correct for all atmospheric distortion.  Post processing algorithms can be used to 

further reconstruct the RSO.  Combinations of Adaptive Optics and post processing are 

currently being used operationally to characterize satellites and anomalies in space. 

 

1.2 Goals 

1.  The purpose of this thesis research is to develop an algorithm that can be used with or 

without adaptive optics to improve image resolution of space objects through the use of 

polarization diversity. 

2.  The algorithm should produce better resolved images when polarization diversity is 

high. 

3.  Knowledge of the atmospheric seeing parameter should not be necessary to restore the 

image and further should be capable of being estimated from a likelihood model. 

4.  The algorithm should be able to function even at very low signal levels. 

 

1.3 Previous Work 

 The worked developed in this thesis is built primarily from the research done by Major 

David Strong [11] and Lieutenant Colonel Adam McDonald [7].  Strong’s dissertation 

created a two-channel, one unpolarized and one linearly polarized, blind deconvolution 

algorithm for passively illuminated objects as is done in this thesis but with several key 

differences.  His algorithm was created for use in short exposure images as opposed to 
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long exposure.  Details of the object will not be blurred out as much from averaging over 

a longer period of time.  The drawback to the short exposure case is that signal levels are 

significantly reduced and therefore the SNR is much lower.  The other downside to this is 

that the point spread function (psf) of the atmosphere is not as well known.  As an image 

is integrated, the psf will tend toward a well known and easily modeled transfer function, 

such as the Kolmogorov spectrum.  In contrast, if the integration time is small, 

fluctuations in the atmosphere can cause the psf to vary greatly.  This makes it difficult to 

estimate and characterize [11]. 

Another major difference is in the development of the two-channel algorithm derivation.  

In this thesis, a prior density for the polarization term is included to restrict the possible 

values that the polarization parameter can take.  This allows for the polarization state and 

the object to be estimated simultaneously.  The addition of the prior gives significantly 

increased information when polarization diversity is present and when calculating the 

correct seeing parameter of the atmosphere [11:Chap 5].   

In MacDonald’s work, he developed a method for estimating the seeing parameter of the 

atmosphere ( ) for a single channel system of laser light, conforming to a negative 

binomial distribution.  The method involved representing the r0 probability density 

function in some distribution.  In that case, based on the observation that good seeing 

(high ) is much less likely than bad seeing (low ), an exponentially decreasing 

function was chosen     

 (1.1) 
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where N is the number of pixels on a side and  is some parameter that must be 

iteratively calculated.  Once the average seeing parameter is found it produces a graph 

similar to that in Figure 3.2.  When equation (1.1) is left out when deriving the likelihood, 

there is no decrease around the actual r0 value and the likelihood continues to increase 

forever [7:Sect 3.2]. 

It was assumed that MacDonald’s method would be needed to find the correct seeing 

parameter for the algorithm described in this document.  Surprisingly, this was not the 

case.  By using the polarization diversity algorithm with a polarization prior, the 

likelihood curve naturally produces a maximum near the actual r0 value.  The curve looks 

very similar to what is produced by Adam MacDonald’s iterative method. 

 

1.4 Summary of the Document 

Chapter 1:  This chapter presents a brief description of what the problem with current 

Space Situational Awareness capabilities and why it is important that new methods be 

developed for the Air Force.  Along with this, relevant previous work done in blind 

deconvolution and polarization diversity is discussed. 

Chapter 2:  This chapter presents the background material necessary to understand the 

development of the polarization diversity blind deconvolution algorithm.  Topics 

discussed include polarization, linear systems, Fourier optics, atmospheric turbulence, 

and estimation theory.   

Chapter 3:  Development of the blind deconvolution algorithm is explained here.  

Beginning with a two-channel system, Poisson statistics are used to create a likelihood 
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model.  It is further refined by introducing a complete data model.  The general method 

used to estimate the object is the General Expectation Maximization (GEM) algorithm. 

Chapter 4:  Simulations done using the algorithm and its results are discussed.  To 

quantify how the algorithm performs at varying signal levels and polarizations, two bar 

targets, polarized differently in the same scene, are propagated through a simulated 

atmosphere and aperture and then reconstructed.   

Chapter 5:  This last chapter discusses general conclusions about the functionality and 

utility of the developed algorithm.  Also, further testing and application are mentioned for 

future work. 
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II. Background 

2.1 Polarimetry 

2.1.1 Linearly Polarized Light 

Light is an oscillating electromagnetic wave with both an electric field component and a 

magnetic field component.  The entire light wave can be described completely by only 

the electric field oscillations.  Given a cartesian coordinate plane, the total electric field at 

any point is given by 

 (2.1) 
 

With  being the direction of propagation and  is time.  This says that the composite 

electric field is just a superposition of the  and  components of the field.  The 

individual component waves are described by the well known standing wave equation 

 (2.2) 
 

 (2.3) 
 

where  is the wave number,  is the frequency,  is a phase shift between the waves and 

the scalar  is the magnitude of the field component.  Assuming that  is constant, then 

the total electric field will oscillate linearly at some angle defined by the phase shift.  An 

example of this is shown in figure 2.1.  In the case where the phase shift is a multiple of 

π, the oscillation will be along either the x or y axis.  This is called horizontally and  
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Figure 2.1: The above diagram shows a total oscillating electric field that is vertically polarized.  Image taken from George State 
University Hyperphysics website: http://hyperphysics.phy-astr.gsu.edu/HBASE/phyopt/polclas.html#c1 
 

vertically polarized light, respectively.  In the development of this thesis, only linearly 

polarized light is considered so elliptical polarization will not be discussed [9:280-285]. 

 

2.1.2 Unpolarized Light Sources 

The term “natural light” refers to a source that is completely unpolarized.  However, it is 

not that the light is unpolarized, it is that the light is changing its polarization state so 

quickly that it cannot be determined.  When excited electrons in an atom return to a lower 

energy state, that energy is released via a photon of light.  The electric field orientation of 

the emitted photon can be thought of as random, even though it is determined by the 

angular momentum of the system.  Photon fluxes can vary greatly but are usually on the 

order of .  With such a large number of constantly changing polarizations, 

natural light can easily be considered random [9:280-285]. 
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2.1.3 Polarization State 

For this thesis, only one polarization parameter is needed.  That is the total linear 

polarization state, P, of the observed light.  As discussed in the previous section, natural 

light is unpolarized.  When that light is integrated over time and decomposed into its x 

and y components, one would expect to find half of the light to be horizontally polarized 

and the other half to be vertically polarized.  The ratio of one of those components to the 

total light collected is P.  It is unimportant which component since they are compliments 

of each other and coordinate system can be rotated arbitrarily in the x-y plane.  In order to 

use the polarization diversity algorithm, one channel collects light directly off the 

telescope and the other channel utilizes a linear polarizer in front of the CCD.  The 

orientation of the polarizer does not matter since the x-y coordinate system chosen is 

completely arbitrary. 

When natural light is reflected off an object, it can become polarized by the material the 

object is composed of.  The amount of polarization is dependent on material 

characteristics and the geometry of the scene.  Manmade objects tend to polarize light 

upon reflection very strongly as do sharp edges.   

 

2.2 Diffraction  

2.2.1 Linear System Theory & The Transfer Function 

Linear systems are those that produce a response to a collection of inputs equal to the 

sum of the responses obtained from the inputs if they were applied individually.  These 

types of transformations can be found in many places, most notably in the time domain 
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for electronic circuits and in the spatial domain for optical systems.  A transformation 

operator, L, is considered to be linear if it obeys the following mathematical property, 

defined as superposition 

 (2.4) 
 

where a & b are scalar quantities and p(x) & q(x) are input functions. x represents an 

arbitrary coordinate system, be it time, space, frequency, etc…  This superposition 

definition has some important properties to note.  First, a linear system is unaffected by 

the scalar magnitude of a function it is operating on.  Secondly, the sum of the output 

functions is equal to the output of the sum of the functions; meaning that there is no 

“mixing” between functions when the operator acts on several at one time.  To see how 

this applies to an optical system, the quantities of equation (2.4) must be given physical 

definition [6:19].   

The input function is a function of the light that leaves the object.  It has not passed 

through any optics or been aberrated in any way.  The output function is the image 

obtained by the camera.  The linear process that is applied to the object is the actual 

propagation of the light through the atmosphere and optical system.  To understand the 

form of the linear transformation, the impulse response of the system must be found.  It is 

assumed known that if a linear operator is applied to an impulse, the output is the 

characteristic response of the system.  Mathematically, an impulse can be described by a 

delta function, .  Application of the sifting property yields 

 (2.5) 
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Again,  and  are two-dimensional coordinates and  is object function.  If the 

operator, L, is applied to this with respect to the  coordinate space, one gets 

 (2.6) 

 

As mentioned above, the impulse response is defined as the output of a linear operator as 

applied to a single impulse.  This will be given the definition 

 (2.7) 
 

substituting this back into equation (2.6) obtains 

 (2.8) 

 

This is a general convolution integral between the original object function and the 

impulse response.  Convolutions are almost always computationally intense and difficult 

to calculate.  If this is done in the spatial frequency domain, the two functions can simply 

be multiplied together and then the inverse Fourier transform taken such that 

 (2.9) 
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 and  are the Fourier transforms of  and , respectively.  

 is the inverse Fourier transform operator.  Specifically,  is called the 

Transfer Function of the system and is defined as [6:19-21] 

 (2.10) 

 

2.2.2 The Point Spread Function 

A delta function was used to define the impulse response of the system.  In imaging 

applications, the impulse response is also referred to as the Point Spread Function (psf).  

In terms of an optical system, the best way to model the psf is to use a completely black, 

zero intensity image with one pixel at the center having a maximum intensity.  It is not a 

perfect delta function for the continuous case but is in a discrete model, such as an array 

of pixels.  It represents an image with infinite frequency content, meaning that its Fourier 

transform does not go to zero as frequency increases [6:20-21].   

If this point source is propagated through an aperture, the psf is found and therefore the 

transfer function is also known for the system.  Figure 2.3 shows both the object and the 

observed image for several circular apertures.  As the images show, the point source 

becomes more and more spread out as the aperture size decreases.  This loss in definition 

can be explained by the transfer function.  The size of the aperture determines the 

maximum spatial frequencies that can be recovered.  Since a point source contains 

infinite frequency content, it gets blurred out due to the aperture cutting off higher spatial 
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frequencies.  Looking at the transfer functions in Figure 2.4, it is clear that as the aperture 

shrinks, so does the cutoff frequency. 

 

Figure 2.2: The first image is that of the original object with a square window of 100cm2.  Each successive image is the object 
propagated through a circular aperture of the diameter specified. 
 

 

Figure 2.3: The top row shows the image of a point source as seen through a circular aperture of the given diameter.  Directly below 
each image is the transfer function.  The transfer function is in spatial frequency.  As the diameter shrinks, so does the maximum 
spatial frequency. 
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2.3 Turbulence 

2.3.1 The Long Exposure Optical Transfer Function 

 The algorithm developed in this thesis is based on the Long Exposure Optical 

Transfer Function (LEOTF) for a combined atmosphere-optics system.  Over any 

integration time, the optics of the telescope do not change but the atmosphere is in a 

constant state of turbulent change.  To find the LEOTF of the entire system, the 

derivation begins with the definition of an OTF 

 (2.11) 

 

where  is the mean wavelength,  is the effective focal length of the optical system, and 

 and  are the spatial frequency coordinates for the Fourier transform space in the 

image plane [6:139-140].  For the long exposure case the atmosphere can be condensed 

into a single phase screen located directly in front of the aperture.  With this 

simplification 

 (2.12) 
 

in which P(x,y) is the pupil function and θ is a random Gaussian variable with mean 

equal to zero [6:145-147].  Inserting this into equation (2.11) and taking the expectation, 

the equation becomes 

 (2.13) 
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where  is a random phase for the light coming through the pupil.  In the denominator, the 

phase of the transfer function is the same as the conjugate transfer function so they cancel 

out; however, this is not true for the numerator.  The only random quantity in equation 

(2.13) is the phase so the expectation can be brought inside upper integrals yielding 

 (2.14) 

 

with the variable substitution  made.  In order to 

determine a usable form of the expectation, the characteristic function is needed.  It is 

defined as 

 (2.15) 
 

where  is Fourier transform variable associated with the frequency content of .  This 

is similar to equation (2.14) which has .  Since both  and  

are Gaussian random variables,  is also Gaussian.  The characteristic function for a zero 

mean Gaussian is given by, 

 (2.16) 
 

where  is the variance of the variable .  Setting  and inserting this equivalent 

form into equation (2.14) then pulling it outside the integrals it becomes 

 (2.17) 
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 (2.18) 
 

where  is the variance of the phase difference.  Equation (2.18) gives the definition of 

the variance and then puts it in terms of correlations.  This is called a phase structure 

function. The first term in equation (2.17) is only dependent on the phase delays caused 

by the atmosphere and the second term is just the OTF of the optical system alone which 

is written as 

 (2.19) 
 

 (2.20) 

 

This demonstrates that the LEOTF of the entire system is completely separable with 

respect to the atmosphere and optics [5:404-407] 

 (2.21) 
 

2.3.2 Phase Structure Function 

One way to characterize the statistical correlation between two points in a distribution is 

through the structure function.  The structure function can be described as the variance of 

the difference between two points in a field.  For the case of the phase difference the 

structure function looks like 
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 (2.22) 
 

where  and  are general spatial coordinates and  and  are deviation for the 

coordinates.  At this point, the structure function could be substituted into equation (2.19) 

in place of the variance term.  However, just a few more steps will be performed before 

this is done.  If the square term is multiplied out and the expectation broken up of these 

terms it gives 

 (2.23) 
 

The above string of expectations can be expressed in terms of the correlation function 

eliminating the need for an initial  coordinate. This now describes the structure 

function as 

 (2.24) 
 

Lastly, this structure function can be inserted into equation (2.19) giving an average 

atmospheric transfer function in terms of autocorrelations [1:38-40] 

 (2.25) 

 

2.3.3 Kolmogorov Structure Function 

 The fluctuations in phase are caused by changes in the index of refraction in the 

air.  These changes arise from fluctuations in temperature, and to a lesser degree pressure.  
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In 1961, Kolmogorov derived an expression for the phase structure function.  This is 

given by 

 (2.26) 
 

where k is the wave number, z is the height of the atmospheric turbulence, and  is a 

measure of the strength of atmospheric turbulence, in units of .  Equation 

(2.26) is for the case of constant  [5:413].  If the strength is changing with altitude the 

structure function is [5:428] 

 (2.27) 

 

A parameter to describe atmospheric seeing is 

 (2.28) 

 

 is called the Fried Parameter and can be thought of as an average atmospheric 

coherence length [5:431].  Rearranging this definition and replacing the integral in the 

structure function, it is written as 

 (2.29) 

 

Finally, this structure function can be inserted into the equation (2.25) yielding the result 

 (2.30) 
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So, the average OTF of the atmosphere can be completely characterized by a single 

length parameter,  [5:439].   

 

2.4 Detection 

The detection of photons by a detector array is a Poisson process.  In this case, an event 

will be defined as an individual pixel detecting a photon.  For this example, it will be 

assumed that the quantum efficiency and photomultiplier are equal to 1.  Over some 

period of time, either an event does or does not occur with some probability.  A binomial 

distribution could be used to model this.  However, photon events occur in such large 

number that the number of trials can be assumed to be infinite.  In that case, the 

probability of detection is given by a Poisson distribution, 

 (2.31) 

 

where  is the mean number of events and  is the number of successes [5:466-

467].  For an imaging system, the mean number of events is given by estimated image 

intensity, , and k is the photocount data.  For multiple pixels, the composite pdf of the 

entire array, assuming statistical independence between detector measurements, is 

 (2.32) 
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where y is actually a two dimensional variable representing the image plane, Y is the 

dimensions of that image plane, and  is the data [10:1065].  How the model 

describes the intensity of the image will be discussed in chapter 3.   

  



20 
 

III. Algorithm Design 

3.1 Log-Likelihood Data Model 

3.1.1 Incomplete Data 

As discussed in section 2.4, for photons incident on a detector, a Poisson distribution is 

used to model the random arrival times of the light.  If you now consider the case of an 

imaging system where two channels are statistically independent, the combined PMF is 

just the multiplication of the two individual PMFs.  This incomplete data likelihood 

model takes the form 

 (3.1) 

 

where  and  are general coordinates of the image planes,   and  are the total 

number of pixels, and  is the collected photon counts from the detectors.  For 

reasons discussed below, the data will be referred to as the incomplete data.  The 

subscript UP denotes the unpolarized channel and the subscript P denotes the polarized 

channel.  and  are the average intensity of the images given by the 

convolutions 

 (3.2a) 

 

 (3.2b) 
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 is the object,  is the point spread function,  is the set of polarization 

states with values between 0 and 1, and x is a general coordinate for the object plane 

[10:1065].  

 

3.1.2 Complete & Incomplete Data Relationship  

At this point the concept of complete data will be introduced.  Complete and incomplete 

data are related but the relation between the two can be totally user defined.  Further, the 

complete data do not even need to be physical.  The only requirement is that they be 

statistically consistent.  It is more a matter of choosing parameters that make the 

equations solvable.  In this case, the relation between the two will be defined as 

 (3.3) 

 

where  is a piece of complete data and will be considered a Poisson random 

variable.  This is saying that the incomplete data is the sum of small individual pieces of 

complete data.  Since the incomplete data is a sum over a set of Poisson random 

variables, it is also a Poisson random variable and remains statistically consistent.  The 

expectation of the complete data is given by 

 (3.4) 
 

So, taking the expectation of equation (3.3) and inserting equation (3.4) 
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 (3.5) 

 

Now the complete data has a relationship to the incomplete data and is statistically 

consistent [10:1067].   

 

3.1.3 Complete Data Log-Likelihood 

Taking the log of equation (3.1) and assuming statistical independence of the pixels in the 

images, the incomplete data log-likelihood is 

 (3.6) 

 

The subscript ID stands for incomplete data.  This is only shown here for comparison to 

the complete data log-likelihood.  There is no way to go directly from the incomplete to 

the complete data model.  The complete data log-likelihood is given by 

 (3.7) 

 

This looks very similar to equation (3.6) but there is no direct relationship between them.  

The factorial of the data has no terms for  or  and will not affect the likelihood 

so they can be dropped.  Removing these terms (3.7), it becomes 
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 (3.8) 

 

3.1.1 Polarization Prior 

In order to completely describe the joint likelihood of the two channel system, a prior is 

needed to constrain the polarization parameters .  Right now, the polarization can be 

any number greater than or equal to zero, due to the Poisson nature of the signal.  It is 

known that the value of P cannot exceed 1.  Since the likelihood only needs to be limited 

by the upper bound, a simple “super-Gaussian” can be used.  For the pdf, this would be 

 (3.9) 

 

where n is an even integer and A is a normalizing factor so that the pdf integrates to unity.  

The normalizing term is unimportant since once the natural log is taken, it becomes 

another constant offset like the data factorial.  As n increases, the pdf models a step 

function more and more.  Figure 3.1 shows a plot of this prior demonstrating how 

increasing n approaches a step function.  Its purpose is to keep the likelihood low for P 

values greater than one but high for values less than one, allowing the data to accurately 

estimate the P state.  For example, P = 0.95, the prior would bias the estimated value 

away from this.  Now the complete data log-likelihood function is 

 (3.10) 



24 
 

 

Figure 3.1: A plot of the prior function in equation (3.9).  As n increases, the prior models a step function more closely. 
 

3.2 Expectation Maximization Algorithm 

The General Expectation Maximization (GEM) algorithm is a method for estimating an 

unknown quantity, the complete data, given a set of related known quantities, the 

incomplete data.  The process involves taking the conditional expectation of the complete 

data likelihood given the incomplete data and the old parameter estimates.  Once that is 

done, the final step involves maximizing the new function for the desired parameters.  

The steps for the GEM algorithm follow the simple format of: 

1. Take the conditional expectation of the complete data log-likelihood 

2. Maximize the new equation from step 1 for the parameter(s) of interest 

3. Calculate the conditional expectation given the old parameters 

4. Calculate what the new parameters will be given step 3 

5. Iteratively repeat steps 3 and 4 until a stopping criteria is reached 

Increasing n 
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3.2.1 Expectation Step 

Using the complete data log-likelihood model described earlier in the chapter, a new 

function can be found by taking the conditional expectation.  The general Q function is 

given as [10:1066] 

 (3.11) 
 

The Q function for the likelihood model in equation (3.10) is then 

 (3.12) 

 

From this point forward, the conditions of the expectation will be suppressed but should 

be kept in mind.  The conditional expectation can be brought inside the summation.  

However, the only term within the Q function that is a random variable is the data.  

Making this simplification, the Q function becomes 

 (3.13) 

 

The expectation of the complete data is not a known quantity and must be calculated.  A 

method for calculating the expected value of the data is given by Schulz and used in the 

previous work done by Strong [11:Chap 5],[10:1067].  Those equations are 

 (3.14a) 
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 (3.14b) 

 

It has been shown that that the conditional probability distributions needed to compute 

the conditional expectations in equations (3.14) are binomial [4].  Accepting this, an 

intuitive way of thinking about these equations is to remember that the expectation of a 

binomial distribution is n times p, where n is the number of trials and p is the probability 

of success.  The data are a measure of the number of photons that hit a pixel and can be 

thought of as n trials.  The numerators in the equations are simply a piece of complete 

data.  In the denominator, the intensity is a sum over all pieces of complete data.  So, the 

ratio of these two terms is a probability, p.   

 

3.2.2 Maximization Step 

In the maximization step, there are two parameters of interest, the object, , and the 

polarization state, .  These are solved for simultaneously by taking the derivative 

with respect to each and setting them equal to zero.  First, taking the derivative of the Q 

function with respect to  and setting equal to zero gives 

 (3.15) 

 

Note that the derivative was taken with respect to a specific instance of x so the 

summation over the object plane vanishes.  The object in the second term is not 

dependent on y, only on the psf.  By definition, assuming and ideal optical system, the 
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sum of the psf is equal to 1.  Including this and solving for  the maximization 

becomes 

 (3.16) 

 

This is as far as this equation needs to be simplified.  Now to repeat this procedure with 

respect to the object, .  Taking the derivative and setting equal to zero, the 

maximization is 

 (3.17) 

 

Again, summing over the psf terms and solving for , the final form is 

 (3.18) 

 

To remove , equations (3.16) and (3.18) are set equal to each other, 

 (3.19) 

 

Moving all terms to one side and separating them gives 

 (3.20) 
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The last step is to multiply through by  which shows that 

 (3.21) 

 

At this point, the only way to solve for is to find the roots of this polynomial 

expression.  As mentioned before, as n grows larger, the more accurately the prior models 

a step function.  The drawback to a large n is that it requires more computing time.  There 

is only one real root to the expression, but which one it is can’t be known prior to solving 

for them all.  A practical value to choose for n would be a number less than 10. 

In the algorithm, once is estimated, it is inserted back into equation (3.18).  Then, 

an estimate for the object can be found.  Having a new object and polarization state, the 

algorithm is looped so that a new intensity and complete data expectation can be 

calculated to find the next and estimates.  The iteration process is repeated 

until the stopping criterion is reached. 

 

3.2.3 Stopping Criterion  

In order to know when the algorithm should be stopped, a specific criterion needs to be 

set.  One way to do this is to use the statistical properties of the noise.  The intensity is a 

convolution of the estimated object with the total system transfer function; in effect, it 

tries to mimic the data.  However, the recreated object cannot exactly account for the 

random noise in the system.  So, once the variance difference between the intensity image 

and the data comes within one standard deviation of the data’s variance, the algorithm is 



29 
 

stopped.  If it were allowed to iterate beyond this point, the reconstruction will try to 

incorporate too much of the noise as part of the object, skewing the object estimate.  The 

stopping criterion is then [8] 

 (3.22) 

 

The polarized data set is used instead of the unpolarized because the variance is of the 

polarized image is always less and the algorithm will converge faster.  In test runs of the 

algorithm, when the unpolarized data was used, the estimated object was noticeably over-

iterated.   

 

3.3 Seeing Parameter Estimation 

The true seeing parameter r0 value, which is used to generate the psf, is not known when 

the algorithm is initialized.  The reconstruction is simply recalculated for a range of r0 

values.  The likelihood of the reconstructed image is found each time by using equation 

(3.8).  After processing is done, a likelihood curve vs. r0 values can be plotted.  In all 

cases tested, this plot looks similar to Figure 3.2.  The likelihood sharply rises from very 

bad seeing to the correct r0 value.  This gives a maximum near the actual seeing 

parameter.  The likelihood value itself is not important; it is simply a comparative 

measure between different r0 values.  The algorithm has a tendency to slightly 

overestimate r0 but is usually within a half centimeter of truth. 
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Figure 3.2:  After the algorithm produces an estimated image for a range of r0 values, the likelihood is calculated and plotted.  It 
reaches maximum at or near the true seeing parameter.  In this case, the r0 value was 6cm and was estimated exactly. 
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IV. Results 

4.1 Simulation Setup 

In order to accurately quantify the capabilities of the polarization diversity algorithm, a 

simple object is needed to be reconstructed.  It is not as impressive as using satellite 

images but will provide substantially more information about the bounds of the 

algorithm.  Two bar targets separated by two pixels are used as the object.  The total 

image size used is 60cm on a 64x64 pixel grid so each pixel represents 0.94cm.  This 

object is shown if Figure 4.1.  Each bar is set with a different polarization state.  The 

following sections describe the tests that were done on the bar target by varying different 

parameters of the data. 

 

Figure 4.1: Two bars to be propagated through a simulated atmosphere and telescope aperture.  Each bar is given a different 
polarization parameter. 
 

Pixels 

Pixels 
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4.2 Test One: Signal Variation 

The first simulations were done by varying the polarizations on both bars and also 

increasing the signal strength of the data.  P for both bars was iterated from 0 to 1 in 0.1 

steps separately.  Once there was an object estimate for all possible polarization 

combinations, the signal power was increased and the process was repeated.   

To keep data sizes small, a one-dimensional slice is taken for each estimated object, since 

the object is uniform in the vertical dimension.  If the object were reconstructed perfectly, 

it would look like two periods of a square wave, as in Figure 4.2.  In order to do that 

though, infinite frequency content would be required in the continuous case.  

Unfortunately too much of the higher spatial frequencies are lost through diffraction.  

However, the goal of this simulation is not to exactly reproduce the bar targets but rather 

just to distinguish that there are two targets present.  An example of the reconstructed 

object is shown in Figure 4.3.  It should be noted that the intensity of the image is much 

higher than that of the object.  This does not matter as they are both scaled to the same 

intensity range when displayed.  Figure 4.4 is a screenshot of the algorithm in progress 

for bar polarizations of 0.2 and 1.0.  The top two images are that of the observed data 

channels after being propagated through the atmosphere and aperture.  The bottom right 

is the object and the bottom left is the reconstruction. 
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Figure 4.2:  A cross section of the object shown in Figure 4.1 
 

 

Figure 4.3:  An example of the reconstructed bar target.  In this case, the algorithm was easily able to distinguish two different objects. 
 

Pixels 

Pixels 

Intensity 

Likelihood 
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Figure 4.4: A screenshot of the algorithm reconstruction the object.  The upper left shows the unpolarized data channel, polarized 
channel in the upper right, object estimate in lower left, and object in lower right. 
 

To characterize how well the individual bars can be resolved, a ratio is taken of the 

minimum between the two bars and the maximum of the bars.  This gives a number less 

than one with smaller ratios indicating better resolution.  To see how different 

polarizations affect resolution, a contour plot of the ratios is shown in Figure 4.5.  The x 

and y axis are the polarizations of the two bars.  The figure shows that the best resolutions 

are found where at least one of the targets is highly polarized, close to either 0 or 1.  The 

area near zero polarization diversity, along the diagonal, does not fare as well.  Along 

with finding where the best resolutions occur, the average value can be found with 

respect to the signal level.   
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Figure 4.5: An example contour plot of resolving capability based on polarization of bar targets 
 

Test 2: Reproducibility 

The next simulation produced the same data as test one but ran only two signal levels, 

2×104 and 9×104 photons, with an r0 of 3.0cm.  The aperture size for all tests was set to 

10cm.  However, this was repeated 5 times each to make sure that similar, not necessarily 

identical, contour plots were produced.  The 5 contour plots were then averaged.  Most of 

the center areas where there is not much diversity do not show comparatively high 

resolutions.  However, near the very edges where diversity is the highest, the resolutions 

are much better.  This showed that similar results were achieved each time the simulation 

was initiated. 

 



36 
 

Test 3: Resolvable Threshold 

Through testing a set of different r0 values, aperture size of 10cm, the threshold at which 

the algorithm can distinguish two different objects was found to be 2.2cm. At this value, 

high polarization diversity yields some resolution but not much whereas low diversity 

still cannot resolve the two objects.  If r0 is incremented to 2.3cm, resolution increases 

dramatically across all polarization combinations.  Figure 4.6 shows a very nice 

symmetric gradient across all the plots.  As the diversity decreases toward the center line, 

resolution gets worse and then begins to get better as it approaches the other extreme.  It 

should be fairly symmetric since which bar is polarized a certain way shouldn’t affect the 

reconstruction. 

The first run of this test was done at a 5×104 photocount.  Repeating the same simulation 

with lower signal values of 104, 5×103, 103, and 500 (r0 of 2.3cm), yields expectedly 

worse results along the diagonal where there is no diversity.  In contrast, as the diversity 

increases, the signal level becomes less and less important and the reconstruction 

continues to produce very good results.  At a certain point below a photocount of 100, the 

method for quantifying the data breaks down.  The reconstructed image is no longer 

symmetric.  The cross section does not accurately represent the image as a whole. 
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Figure 4.6:  Contour plot of resolving capability based on bar polarizations.  Signal levels shown are 500 (top left), 1000 (top center), 
5000 (top right), 10000 (bottom left), 50000 (bottom right) 
 
 

Test 4: Sample Satellite Reconstruction 

This algorithm was designed to reconstruct images of satellites acquired from ground-

based telescopes.  In order to make a qualitative estimate of how well the algorithm 

works, a simulated satellite is used.  Figure 4.7 shows the unpolarized satellite and the 

polarized satellite before propagation.  The polarized data was created using an edge 

detection filter on the unpolarized object to represent the high polarization of edges.  This 

is not the best representation of a polarized satellite but it is sufficient for this test.  Figure 

4.8 shows another screenshot of the algorithm with both data channels, the object and the 

reconstruction.  There is noticeably better resolution on the reconstruction than the raw 

data.  
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Figure 4.7:  A satellite with the unpolarized object (left) and polarized object (right) 

 

 

Figure 4.8:  Screenshot of the algorithm restoring a satellite image.  Unpolarized data channel (top left), polarized data channel (top 
right), object estimate (bottom left), object (bottom right) 
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V. Conclusions 

5.1 General Conclusions 

The purpose of the algorithm developed in this thesis was to produce improved object 

estimates beyond that of single channel models currently employed.  The process is 

dependent on not just polarization but polarization diversity.  When two points in the 

image have significantly different polarizations, one horizontal and one vertical for 

instance, the ability of the algorithm to resolve them is greatly increased.  In contrast to 

this, when there is little to no diversity the algorithm will only resolve as well as a single 

channel system would.   

The first unexpected consequence of using polarization diversity is that it is invariant to 

signal level.  When there is high diversity, low signal levels can be resolved just as well 

as much higher ones.  This continues down to SNR’s below 10.  However, as the signal 

decreases, points with low polarization diversity cannot be distinguished as well or at all.  

The required level of diversity increases as the signal fades.  The points must be 

increasingly polarized to achieve the same resolution but, at the extremes points, they are 

always resolved to the same high level. 

The other goal of the algorithm was to determine the Fried’s parameter for the 

atmosphere without having any knowledge of the seeing conditions.  The work done by 

MacDonald [7:5-(29-30)] required a secondary method to calculate the r0 value from the 

likelihood curve.  Without a separate estimation of the r0 value, the likelihood curve rises 

steeply and levels off but never reaches an apex.  In the case of polarization diversity, this 

additional calculation is not needed.  The curve does reach a maximum and then begins to 



40 
 

decrease.  With the additional information provided by a two channel system, the correct 

seeing parameter naturally falls out of the likelihood. 

 

5.2 Future Work 

One simulation that was not preformed was to determine the exact resolving capability 

based on polarization and bar separation.  This simulation would show how well or badly 

the algorithm can resolve compared to the diffraction limit of the optic used.  Previous 

work done by Strong showed that resolutions up to twice the diffraction limit are possible 

using the polarization diversity method he developed [11]. 

The system used in this thesis is two-channel, with one unpolarized and one linearly 

polarized.  The algorithm could be expanded to be a multi-channel system incorporating 

several polarization parameters, including the other linear polarization and both left and 

right circularly polarized states.  Adding in the third channel for the other linear state is 

relatively easy.  The circular polarizations would require a greater effort. 

The algorithm has yet to be tested using measured data.  A suggested method for a 

controlled test is to use a small telescope pointed towards a bar target along a horizontal 

path.  Just as a simulated bar target was used in chapter 4, a physical one could be used 

with a polarizer placed in front of each one of the bars.  Using a horizontal path can allow 

for the average r0 value to be accurately estimated.  Images could then be taken through 

the telescope and processed using the algorithm in the exact same way that the simulated 

data was. 
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Two observatory sites are currently attempting to resolve Geo satellites, University of 

Arizona MMT, Figure 5.1, and the Maui Space Surveillance Center, Figure 5.2.  The 

algorithm could be tested and implemented for data acquired at these sites.  With the 

notable degree of polarization usually found in reflected light from satellites and the low 

signal levels from them, it is a prime candidate for this algorithm. 

Another possible application is in Solar Physics.  The Sun’s intense magnetic field has an 

effect on the light emitted from the solar surface.  The Zeeman Effect splits light emitted 

in strong magnetic fields.  A slight shift in wavelength occurs slightly above and below 

the non-degenerate state.  The separate spectroscopic lines are also polarized.  This 

polarization is very noticeable especially in and near sunspot regions.  The polarization 

diversity algorithm can be used to resolve these sunspot features. Due to the high signal 

levels received from the sun, adaptive optics are not usually feasible in solar observation 

making this an ideal application [2:150-152,418-419].    

  
Figure 5.1:  6.5 meter primary telescope mirror at the 
University of Arizona MMT. 

Figure 5.2:  Air Force Maui Optical Station. Haleakala, Maui, Hawaii . 
Image take from AMOS website: 
http://www.maui.afmc.af.mil/Photos/MSSS2_lg.jpg 
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